Leaving Certificate Examination

Sample Paper 5

Applied Mathematics

Higher Level 2 hours and 30 minutes

400 marks

Examination Number

For exa	aminer
Question	Mark
1	/50
2	/50
3	/50
4	/50
5	/50
6	/50
7	/50
8	/50
	/50
	/50
Written Total	/400
Project	/100
Overall Total	/500
Overall Grade	

Question 1 (a)

A particle C of mass 2*m* rests on a rough plane which is inclined at 30° to the horizontal.

The coefficient of friction between C and the plane

is $\frac{\sqrt{3}}{21}$. A light inextensible string which passes under a smooth movable pulley of mass 3mconnects C to a particle D of mass m, as shown in the diagram.

The system is released from rest. C moves up the plane.

(i) Show, on separate diagrams, the forces acting on the moveable pulley and on each of the masses.

(ii) Find in terms of *m* the tension in the string.

A particle is attached to one end of a light inextensible string of length 0.5 m. The other end of the string is attached to a fixed point *C*. The particle moves in a vertical circle.

The greatest and least tensions in the string are 3T and T, respectively.

Find the speed of the particle at the lowest point.

(b)

(a)

A ball *E* is thrown vertically upwards with a speed of 42 m s⁻¹.

T (< 8) seconds later another ball, F, is thrown vertically upwards from the same point with the same initial speed.

(i) Find where ball *E* is after 5 s and the total distance it has travelled in this time.

(ii) Prove that when *E* and *F* collide, they will each be travelling with speed $\frac{1}{2}gT$.

The rate of decay at any instant of a radioactive substance is proportional to the amount of the substance remaining at that instant. The initial amount of the radioactive substance is N and the amount remaining after time t (hours) is x.

(i) Prove that $x = Ne^{-kt}$, where k is a constant.

(b)

(iii) If the amount remaining is reduced from $\frac{N}{3}$ to $\frac{N}{4}$ in t hours, find the value of t.

Question 3 (a)

A block A of mass *m* is connected by a light inextensible string to a second block B of mass 3 kg.

They slide down a rough inclined plane which makes an angle α with the horizontal where $\tan \alpha = \frac{3}{4}$.

The string remains taut in the subsequent motion.

The coefficient of friction between A and the plane is $\frac{3}{4}$.

The coefficient of friction between B and the plane is $\frac{1}{3}$. The system is released from rest.

Find

(i) the acceleration of B, in terms of m

(ii) the value of m if the tension in the string is 3.92 N.

(b)

Solve the difference equation $u_{n+2} - 7u_{n+1} + 10u_n = 4n^2 - 10n - 3$ given that $u_0 = 2$ and $u_1 = 8$.

(a)

(i) Solve the differential equation

$$(1+t^2)\frac{dr}{dt} = 1$$

given that r = 0 when $t = \frac{\pi}{4}$.

(ii) If

$$\frac{dy}{dx} = (y+4)\cos^2 3x$$

and y = -3 when x = 0, find the value of y when $x = \frac{\pi}{6}$.

A smooth sphere P has mass 2m and speed u. It collides obliquely with a smooth sphere Q of mass m which is moving with speed ku, as shown in the diagram. Before the collision, the direction of P makes an angle of 30° to the line of centres. After the collision, the direction of P makes an angle of 60° to the line of centres.

The coefficient of restitution between the spheres is e.

(i) Show that $k = \frac{\sqrt{3}(1-e)}{2(1+e)}$.

(b)

(ii) Find the speed of Q immediately after the collision.

(a)

A particle is projected from a point *P* with speed 60 m s⁻¹ at an angle of 30° to the horizontal. At the same time a second particle is projected from a point *Q* with speed 50 m s⁻¹ at an angle β to the horizontal. *P* and *Q* are on the same horizontal level and are 100 m apart. The particles collide at *R* as shown in the diagram.

(ii) Find the distance |PR|.

(b) Evaluate $\int e^{2x} \cos 3x \, dx$

								_				_							_	-				
								_		_	 	_							_					
								_											_					
<u> </u>									 	_	 		 		 								_	
<u> </u>									 		 		 		 								_	
								_		_	 						_	_	_				_	
					_						 					-						_		
								-		-							_	_	-					
								_											_					
											 					_						_	_	
								_		_	 			_					_			-		
					_																	_		
\vdash		 			-		_										_		_			_		
																						_		
					-			_			 											-		
								_											_					
					-						 											_		
-		 			-	-		_											_			_		
					-																			
					_																	_		
\vdash		 	 	 	-				 													_		

(a)

Three identical small smooth spheres A, B and C, 5u _ 2u each of mass m, lie in a straight line on a smooth horizontal surface with B between A and C. В Α С Spheres A and B are projected towards each other with speeds 5*u* and 2*u* respectively, and at the same time C is projected along the line from B away from B with speed 4u. The coefficient of restitution between each pair of spheres is e. After the collision between A and B there is a collision between B and C. Find, in terms of *e* and *u*, the speed of each sphere after the first collision. (i) Show $e > \frac{5}{7}$. (ii)

(iii) If $e = \frac{6}{7}$ show that B will not collide with A again.

(b) The network below shows

The network below shows a system of one way roads. The number on each edge represents the number of bags for recycling that can be collected by driving along that road. A collector is to drive from A to I.

(i) Using the table below, find the maximum number of bags that can be collected driving from A to I.

Stage	State	Action	Destination	Value

(ii) State the route that the collector should take in order to collect the maximum number of bags.

⊢	_		-	 		 	 											
	_		_	 							 	 		 	 			 <u> </u>

(a)

A particle P, of mass 3 kg, is projected along a rough inclined plane from the point A with speed 4·2 m s⁻¹. The particle comes to instantaneous rest at *B*. The plane is inclined at an angle α to the horizontal where $\tan \alpha = \frac{9}{40}$. The coefficient of friction between the particle and the A2mst B plane is $\frac{3}{20}$.

Show that the deceleration of P is $\frac{15g}{41}$. (i)

(ii) Find |AB|.

After reaching *B* the particle slides back down the plane.

(iii) Find the speed of P as it passes through A on its way back down the plane.

(b)

A baggage chute has two sections, PQ and QR,

as shown in the diagram.

PQ is smooth and is a quarter circle of radius r.

QR, of length d, is rough and horizontal.

The coefficient of friction between the bag and section QR is μ .

A bag of mass *m* kg is released from rest at *P* and comes to rest at *R*.

Find

(i) the speed of the bag at Q in terms of r

(ii) d in terms of μ and r.

The speed of the bag when it is halfway along QR is 7 m s⁻¹.

(iii) Find the value of r.

(a)

A particle P moves along a straight line.

The speed of P at time t is v, where $v = at^2 + bt + c$ and a, b and c are constants. The initial speed of the particle is 15 m s⁻¹.

After 2.5 seconds the particle reaches its **minimum** speed of 2.5 m s^{-1} .

Find

(i) the value of *a*, the value of *b*, and the value of *c*

(ii) the acceleration of P when t = 4 seconds

(iii) the distance travelled by P in the third second of the motion.

(b)

(i) The directed graph below represents a network of one-way streets. The numbers represent the lengths (in metres) of the streets. Find, using an algorithm from your course, the shortest route from A to F and write down its length.

(ii) If the street between D and G is closed for repairs, what is the shortest route from A to F and write down its length.

Page for extra work.

Label any extra work clearly with the question number and part.

Г																						
L																						
L																						
ŀ	-				-							 			_	-	_	_				
L																						
L																						
ŀ	-				 		-					 		 _	_	_	 _	_				
ŀ	_																					
L																						
ŀ																						
ŀ	_	 								 		 	 		 		 					-
L																						
Γ																						
ŀ	-	 								 -		 		 _			 					-
L																						
L																						
ŀ	-				-	-											_	_				
ŀ	_	 								 		 					 					-
L																						
ľ																						
ŀ	-	 								 -		 		 _	_		 	_	_			-
L																						
L																						
ŀ	-	 								 -		 		 _	_	-	 	_				-
ŀ	_						_			<u> </u>											\square	<u> </u>
L																						
ŀ																						
ŀ	_	 								 		 		 			 					-
L																						
Γ																						
ŀ	-									 -		 			_	_	 _	_	_			-
ŀ	_																					
L																						
Γ																						
ŀ	-	 								 		 		 _			 					-
L																						
L																						
ŀ																_						
ŀ	_						_			 		 	 		 		 					
L																						
Γ																						
ŀ	-	 								 -		 		 _	_	-	 	_				-
L	_																					
L																						
ŀ																						
┞	-						-			 -									_	$\left - \right $	\vdash	-
l																						
ſ																						
ŀ	-		-	-	-	-	-	-	-	 -		 						-	-		\vdash	
ŀ	_						_			<u> </u>											\square	<u> </u>
ľ																						
ŀ	\rightarrow									 -							 					
L																						
ſ																						
ŀ	-						-			 -		 					 -	-	-		\vdash	
ŀ	_						_			<u> </u>											\square	<u> </u>
ľ																						
ŀ	-						_			-											$ \square$	
ſ																						
ŀ	-		-				-			-											\vdash	
ŀ		 					_			L												<u> </u>

Page for extra work.

Label any extra work clearly with the question number and part.

Г																						
L																						
L																						
ŀ	-				-							 			_	-	_	_				
L																						
L																						
ŀ	-				 		-					 			_	_	 _	_				
ŀ	_																					
L																						
ŀ																						
ŀ	_	 								 		 	 		 		 					-
L																						
Г																						
ŀ	-	 								 -		 		 _			 	_				-
L																						
L																						
ŀ	-				-	-											_	_				
ŀ	_	 								 		 					 					-
L																						
ľ																						
ŀ	-	 								 -		 		 _	_		 _	_	_			-
L																						
L																						
ŀ	-	 								 -		 		 _	_	-	 	_				-
ŀ	_						_			<u> </u>											\square	<u> </u>
L																						
ŀ																						
ŀ	_	 								 		 		 			 					-
L																						
Γ																						
ŀ	-									 -		 			_	_	 _	_	_			-
ŀ	_																					
L																						
Г																						
ŀ	-	 								 		 		 _			 					-
L																						
L																						
ŀ																_						
ŀ	_						_			 		 	 		 		 					-
L																						
Γ																						
ŀ	-	 								 -		 		 _	_	-	 	_				-
L	_																					
L																						
ŀ																						
┞	-						-			 -									_	$\left - \right $	\vdash	-
l																						
ſ																						
ŀ	-		-	-	-	-	-	-	-	 -		 						-	-		\vdash	
ŀ	_						_			<u> </u>											\square	<u> </u>
ľ																						
ŀ	\rightarrow	 								 -							 					<u> </u>
L																						
ſ																						
ŀ	-									 -		 					 -	-	-		\vdash	
ŀ	_						_			<u> </u>											\square	<u> </u>
ľ																						
ŀ	-						_			-											$ \square$	
ſ																						
ŀ	-		-				-			-											\vdash	
ŀ		 					_			L												<u> </u>