Sample Paper 1 Marking Scheme

Question 1

(a)

A car of mass 1200 kg starts from rest and travels along a straight horizontal road. The engine of the car exerts a constant power of 3000 W .

If there is no resistance to the motion of the car, find
(i) the speed of the car after 3 minutes
(ii) the average speed of the car during this time.
(i)

$$
\begin{gather*}
F=\frac{P}{v}=\frac{3000}{v} \tag{5}\\
1200 \times \frac{d v}{d t}=\frac{3000}{v} \\
\int v d v=\frac{5}{2} \int d t \tag{5}\\
{\left[\frac{1}{2} v^{2}\right]_{0}^{v}=\frac{5}{2}[t]_{0}^{180}} \tag{5}\\
\frac{1}{2} v^{2}=450 \\
v=30 \mathrm{~m} \mathrm{~s}^{-1} \tag{5}
\end{gather*}
$$

(ii)

$$
\begin{aligned}
& 1200 \times v \frac{d v}{d s}=\frac{3000}{v} \\
& \int v^{2} d v=\frac{5}{2} \int d s \\
& {\left[\frac{1}{3} v^{3}\right]_{0}^{30}=\frac{5}{2}[s]_{0}^{s}} \\
& s=3600
\end{aligned}
$$

$$
\begin{equation*}
\text { average speed }=\frac{3600}{180}=20 \mathrm{~m} \mathrm{~s}^{-1} \tag{5}
\end{equation*}
$$

(b)

A smooth sphere P has mass m and speed u. It collides obliquely with a smooth sphere Q , of mass m, which is at rest. Before the collision, the direction of P makes an angle α with the line of centres, as shown in the diagram.

The coefficient of restitution between the spheres is $\frac{1}{3}$.
During the impact the direction of motion of \mathbf{P} is turned through an angle β. Show that $\tan \beta=\frac{2 \tan \alpha}{1+3 \tan ^{2} \alpha}$.
$\mathrm{P} \quad m \quad u \cos \alpha \vec{\imath}+u \sin \alpha \vec{\jmath}$
$v_{1} \vec{\imath}+u \sin \alpha \vec{\jmath}$
Q $\quad m$
$0 \vec{\imath}+0 \vec{\jmath}$
$v_{2} \vec{\imath}+0 \vec{\jmath}$

PCM $\quad m u \cos \alpha+m(0)=m v_{1}+m v_{2}$
NEL $\quad v_{1}-v_{2}=-\frac{1}{3} u \cos \alpha$

$$
\begin{aligned}
v_{1}+v_{2} & =u \cos \alpha \\
v_{1}-v_{2} & =-\frac{1}{3} u \cos \alpha \\
v_{1} & =\frac{1}{3} u \cos \alpha
\end{aligned}
$$

$$
\tan (\alpha+\beta)=\frac{u \sin \alpha}{v_{1}}=3 \tan \alpha
$$

$$
\frac{\tan \alpha+\tan \beta}{1-\tan \alpha \tan \beta}=3 \tan \alpha
$$

$$
\tan \alpha+\tan \beta=3 \tan \alpha-3 \tan ^{2} \alpha \tan \beta
$$

$$
\begin{equation*}
\tan \beta=\frac{2 \tan \alpha}{1+3 \tan ^{2} \alpha} \tag{25}
\end{equation*}
$$

Question 2

(a)

A train takes 40 minutes to travel from rest at station A to rest at station B. The distance between the stations is 20 km . The train left station A at 10:00. At 10:15 the speed of the train was $32 \mathrm{~km} \mathrm{~h}^{-1}$ and at 10:30 the speed was $48 \mathrm{~km} \mathrm{~h}^{-1}$.

The speed of $48 \mathrm{~km} \mathrm{~h}^{-1}$ was maintained until the brakes were applied, causing a uniform deceleration which brought the train to rest at B.

During the first and second 15-minute intervals the accelerations were constant.
(i) Draw a speed-time graph of the motion.
(ii) Find the time taken for the first 16 km .
(iii) Find the deceleration of the train.
(i) speed

(ii) $\frac{1}{2} \times \frac{1}{4} \times 32+\frac{1}{4} \times 32+\frac{1}{2} \times \frac{1}{4} \times 16=14$

$$
\begin{align*}
& 14+48\left(\frac{t_{1}}{60}\right)=16 \\
& t_{1}=2.5 \text { minutes } \\
& \text { time }=32.5 \text { minutes } \tag{5}
\end{align*}
$$

(iii) $14+48\left(\frac{t}{60}\right)+\frac{1}{2} \times\left(\frac{10-t}{60}\right) \times 48=20$

$$
\begin{array}{r}
\frac{4}{5} t+\frac{2}{5}(10-t)=6 \\
t=5 \mathrm{~min} \tag{5}
\end{array}
$$

$$
\begin{align*}
\text { deceleration } & =\tan \alpha=48 \div \frac{5}{60} \\
& =576 \mathrm{~km} \mathrm{~h}^{-2}=\frac{2}{45} \mathrm{~m} \mathrm{~s}^{-2} \tag{5}
\end{align*}
$$

(b)
(i) $\quad(1.004)^{12}=1.049070208$

$$
\begin{equation*}
\text { APR } \approx 4.907 \% \tag{5}
\end{equation*}
$$

(ii) $\quad D_{n}=1.004 D_{n-1}-A$
(iii) $\quad D_{0}=120000$

$$
D_{1}=(1.004)(120000)-A
$$

$$
D_{2}=(1.004)^{2}(120000)-(1.004)(A)-A
$$

$$
\begin{equation*}
D_{3}=(1.004)^{3}(120000)-(1.004)^{2}(A)-(1.004)(A)-A \tag{5}
\end{equation*}
$$

$$
D_{n}=120000(1.004)^{n}
$$

$$
-\left[A+(1.004)(A)+(1.004)^{2}(A)+\cdots+(1.004)^{n-1}(A)\right]
$$

$$
=120000(1.004)^{n}-\left[S_{n}, a=A, r=1.004\right]
$$

$$
=120000(1.004)^{n}-\frac{(A)\left(1-(1.004)^{n}\right)}{1-1.004}
$$

$$
\begin{equation*}
=250 A+(120000-250 A)(1.004)^{n} \tag{5}
\end{equation*}
$$

(iv) $0=250 A+(120000-250 A)(1.004)^{180}$ $A \approx € 936.50$

Question 3

(a)

The diagram shows a light inextensible string having one end fixed, passing under a smooth movable pulley C of mass km kg and then over a fixed smooth pulley. The other end of the string is attached to a light scale pan. A bock D of mass $m \mathrm{~kg}$ is placed symmetrically on the centre of the scale pan.
The system is released from rest. The scale pan moves upwards.

(i) Show that $k>2$.
(ii) Find, in terms of k and m, the tension in the string.
(iii) Find, in terms of k and m, the reaction between D and the scale pan.

(i)

$$
\begin{equation*}
k m g-2 T=k m a \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
T-m g=m \times 2 a \tag{5}
\end{equation*}
$$

$$
a=\left(\frac{k-2}{k+4}\right) g
$$

$$
\begin{equation*}
a>0 \Rightarrow k>2 \tag{5}
\end{equation*}
$$

(ii)

$$
T=m g+2 m\left(\frac{k-2}{k+4}\right) g
$$

$$
\begin{equation*}
T=\left(\frac{3 k}{k+4}\right) m g \tag{5}
\end{equation*}
$$

(iii) $\quad R-m g=m \times 2 a$

$$
\begin{equation*}
R=\left(\frac{3 k}{k+4}\right) m g \tag{5}
\end{equation*}
$$

(b)
(i)

$$
\begin{align*}
& \int x^{2} \ln x d x=\int u d v, u=\ln x, d v=x^{2} d x \tag{5}\\
& d u=\frac{1}{x} d x \\
& v=\frac{1}{3} x^{3} \tag{5}
\end{align*}
$$

$$
\begin{equation*}
\int x^{2} \ln x d x=(\ln x)\left(\frac{1}{3} x^{3}\right)-\int\left(\frac{1}{3} x^{3}\right)\left(\frac{1}{x} d x\right) \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{x^{3}}{9}(3 \ln x-1)+c \tag{5}
\end{equation*}
$$

(ii)

$$
\begin{align*}
& F(x)=20 x \\
& W=\int_{0}^{4} 20 x d x=\left.10 x^{2}\right|_{0} ^{4}=160 \mathrm{~J} \tag{5}
\end{align*}
$$

Question 4

(a)

A particle is projected from a point on horizontal ground. The speed of projection is $14 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle α to the horizontal.

Find the two values of α that will give a range of 10 m .

$$
\begin{gather*}
14 \sin \alpha \times t-\frac{1}{2} g t^{2}=0 \tag{5}\\
t=\frac{28 \sin \alpha}{g} \\
14 \cos \alpha \times t=10 \tag{5}\\
14 \cos \alpha \times \frac{28 \sin \alpha}{g}=10 \tag{5}\\
\sin 2 \alpha=\frac{1}{2} \tag{20}\\
\alpha=15^{\circ} \text { or } 75^{\circ} \tag{5}
\end{gather*}
$$

(b)

A 60 gram mass is projected vertically upwards with an initial speed of $15 \mathrm{~m} \mathrm{~s}^{-1}$ and half a second later a 40 gram mass is projected vertically upwards from the same point with an initial speed of $22.65 \mathrm{~m} \mathrm{~s}^{-1}$.
(i) Calculate the height at which the masses will collide.

The masses coalesce on colliding.
(ii) Find the greatest height which the combined mass will reach.
(i)

$$
\begin{equation*}
15 t-4.9 t^{2}=22.65\left(t-\frac{1}{2}\right)-4.9\left(t-\frac{1}{2}\right)^{2} \tag{5}
\end{equation*}
$$

$12.55 t=12.55$
$t=1$
$h=15 \times 1+\frac{1}{2}(-9.8) 1^{2}$
$h=10.1 \mathrm{~m}$
(ii)

$$
\begin{align*}
& v_{1}=15-9.8(1) \tag{5}\\
& v_{1}=5.2 \\
& v_{2}=22.65-9.8\left(1-\frac{1}{2}\right) \\
& v_{2}=17.75 \tag{5}
\end{align*}
$$

$$
\begin{gather*}
0.06 \times 5.2+0.04 \times 17.75=0.1 v \\
1.022=0.1 v \\
v=\frac{1.022}{0.1}=\frac{511}{50}=10.22 \tag{5}\\
v^{2}=u^{2}+2 a s \\
0=10.22^{2}+2(-9.8) s \\
s=5.3
\end{gather*}
$$

greatest height $=5.3+10.1=15.4 \mathrm{~m}$

Question 5
(a)

Subject	Days Available	Days Allocated	Days Left	\% Increase
App Maths	0	0	0	0*
	1	1	0	12*
	2	2	0	20*
	3	3	0	25*
Economics	0	0	0	0*
	1	1	0	9
		0	1	12*
	2	2	0	17
		1	1	21*
		0	2	20
	3	3	0	27
		2	1	29*
		1	2	29*
		0	3	25
Classic St	3	3	0	26
		2	1	33*
		1	2	32
		0	3	29

Answer: 2 days Classical Studies, 1 day Applied Maths (33\%)
(b)

A smooth slide $E F G$ is in the shape of two arcs, $E F$ and $F G$, each of radius r. The centre O of $\operatorname{arc} F G$ is vertically below F as shown in the diagram.
Point E is at a height $\frac{r}{5}$ above point F.
A child starts from rest at E, moves along the slide past the point F and loses contact with the slide at point H. OH makes an angle θ with the vertical.
(i) Find the value of θ.

The child lands in a sandpit at point K.
(ii) Find, in terms of r, the speed of the child at K.
(i)

H
$\frac{1}{2} m v^{2}=m g\left\{\frac{1}{5} r+(r-r \cos \theta)\right\}$
$v^{2}=2 g r\left\{\frac{1}{5}+(1-\cos \theta)\right\}$
$v^{2}=2 g r\left\{\frac{6}{5}-\cos \theta\right\}$

H $\quad m g \cos \theta-R=\frac{m v^{2}}{r}$
$m g \cos \theta-0=2 m g\left\{\frac{6}{5}-\cos \theta\right\}$
$\cos \theta=\frac{4}{5}$

$$
\begin{equation*}
\Rightarrow \quad \theta=36.87^{\circ} \tag{5}
\end{equation*}
$$

(ii) K

$$
\frac{1}{2} m v_{1}^{2}=m g\left(r+\frac{1}{5} r\right)
$$

$$
v_{1}^{2}=\frac{12}{5} g r
$$

$$
\begin{equation*}
v_{1}=\sqrt{\frac{12}{5} g r} \text { or } \frac{14 \sqrt{3 r}}{5} \text { or } 4.85 \sqrt{r} \tag{30}
\end{equation*}
$$

Question 6

(a)

A small smooth sphere A, of mass 3 m moving with speed u, collides directly with a small smooth sphere B, of mass m moving with speed u in the opposite direction. The coefficient of restitution between the spheres is $\frac{1}{2}$.
(i) Find, in terms of u, the speed of each sphere after the collision.

After the collision B hits a smooth vertical wall which is perpendicular to the direction of motion of B. The coefficient of restitution between B and the wall is $\frac{2}{5}$.
The first collision between the spheres occurred at a distance 2 metres from the wall. The spheres collide again 4 seconds after the first collision between them.
(ii) Find the value of u.
(i) $\mathrm{PCM} \quad 3 m(u)+m(-u)=3 m v_{1}+m v_{2}$

NEL $\quad v_{1}-v_{2}=-\frac{1}{2}(u+u)$
$3 v_{1}+v_{2}=2 u$
$v_{1}-v_{2}=-u$
$v_{1}=\frac{u}{4} \quad v_{2}=\frac{5 u}{4}$
(ii) B reaches wall in $2 \div \frac{5 u}{4}=\frac{8}{5 u}$ seconds

In this time A travels $\quad \frac{u}{4} \times \frac{8}{5 u}=\frac{2}{5} \mathrm{~m}$
rebound speed of $B \quad \frac{2}{5} \times \frac{5 u}{4}=\frac{u}{2}$

$$
\begin{aligned}
& \frac{u}{4} \times t+\frac{u}{2} \times t=1.6 \\
& \frac{3 u}{4} \times t=1.6 \\
& \quad \frac{3 u}{4} \times\left(4-\frac{8}{5 u}\right)=1.6
\end{aligned}
$$

$$
\begin{equation*}
u=\frac{14}{15}=0.93 \tag{5}
\end{equation*}
$$

(b)

A particle starts from rest and moves in a straight line with acceleration $(25-10 v) \mathrm{m} \mathrm{s}^{-2}$, where v is the speed of the particle.
(i) After time t, find v in terms of t. (Note: $\int \frac{d x}{a+b x}=\frac{1}{b} \ln |a+b x|+c$).
(ii) Find the time taken to acquire a speed of $2.25 \mathrm{~m} \mathrm{~s}^{-1}$ and find the distance travelled in this time.
(i)

$$
\begin{array}{rl|l|}
\int \frac{d v}{25-10 v} & =\int d t & 5 \\
{\left[-\frac{1}{10} \ln (25-10 v)\right]_{0}^{v}} & =[t]_{0}^{t} & 5 \\
-\frac{1}{10} \ln (25-10 v)+\frac{1}{10} \ln 25 & =t & \\
\ln \frac{25}{25-10 v} & =10 t & 5 \\
v & =2.5\left(1-e^{-10 t}\right) \\
\ln \frac{25}{25-10 v} & =10 t & 5 \\
t & =\frac{1}{10} \ln 10=0.23 \mathrm{~s} \\
\int d s & =2.5 \int\left(1-e^{-10 t}\right) d t \\
s & =2.5\left[t+\frac{1}{10} e^{-10 t}\right]_{0}^{0.23} \\
& =0.35 \mathrm{~m}
\end{array}
$$

(ii)

Question 7
(a)
(i) $T=\frac{12 m}{6}=2 m$
$2 m=m k(6)$
$k=\frac{1}{3}$
(ii)

(5)
(b)

A particle P travelling in a straight line has a deceleration of $4 v^{n+1} \mathrm{~m} \mathrm{~s}^{-2}$, where $n(>0)$ is a constant and v is its speed at time $t(>0)$.

P has an initial speed of u.
(i) Find an expression for v in terms of u, n and t.
(ii) When $n=3$ obtain an expression for the speed of P when it has travelled a distance of 3 m from its initial position.
(i)

$$
\begin{gather*}
\frac{d v}{d t}=-4 v^{n+1} \\
-\int \frac{d v}{v^{n+1}}=4 \int d t \tag{5}\\
\frac{1}{n} \times\left[\frac{1}{v^{n}}\right]_{u}^{v}=4[t]_{0}^{t} \tag{5}\\
\frac{1}{v^{n}}-\frac{1}{u^{n}}=4 n t \\
v^{n}=\frac{1}{4 n t+\frac{1}{u^{n}}} \\
v=\left(\frac{1}{4 n t+\frac{1}{u^{n}}}\right)^{\frac{1}{n}}=\left(\frac{u^{n}}{4 n t u^{n}+1}\right)^{\frac{1}{n}}=\frac{u}{\left(4 n t u^{n}+1\right)^{\frac{1}{n}}} \tag{5}
\end{gather*}
$$

(ii)

$$
\begin{gather*}
v \frac{d v}{d s}=-4 v^{4} \\
-\int \frac{d v}{v^{3}}=4 \int d s \tag{5}\\
{\left[\frac{1}{2 v^{2}}\right]_{u}^{v}=[4 s]_{0}^{3}} \tag{5}\\
\frac{1}{2 v^{2}}-\frac{1}{2 u^{2}}=12-0 \\
\frac{1}{2 v^{2}}=\frac{1}{2 u^{2}}+12=\frac{1+24 u^{2}}{2 u^{2}} \\
v^{2}=\frac{u^{2}}{1+24 u^{2}} \\
v=\frac{u}{\sqrt{1+24 u^{2}}} \tag{5}
\end{gather*}
$$

Question 8

(a)

A small smooth sphere A, of mass 1.5 kg , moving with speed $6 \mathrm{~m} \mathrm{~s}^{-1}$, collides directly with a small smooth sphere B, of mass $m \mathrm{~kg}$, which is at rest.
After the collision the spheres move in opposite directions with speeds v and $2 v$, respectively.
80% of the kinetic energy lost by A as a result of the collision is transferred to B. The coefficient of restitution between the spheres is e.

Find (i) the value of v
(ii) the value of e.
(i) $\mathrm{PCM} \quad 1.5(6)+m(0)=1.5(-v)+m(2 v)$

$$
m=\frac{9+1.5 v}{2 v}
$$

$0.8\left\{\frac{1}{2}(1.5)\left(6^{2}\right)-\frac{1}{2}(1.5) v^{2}\right\}=\frac{1}{2} m(2 v)^{2}$

$$
21.6-0.6 v^{2}=9 v+1.5 v^{2}
$$

(ii) NEL $\quad v_{1}-v_{2}=-e(6-0)$

$$
\begin{aligned}
-v-2 v & =-6 e \\
e & =\frac{v}{2}=\frac{6}{7}
\end{aligned}
$$

$$
2.1 v^{2}+9 v-21.6=0
$$

$$
v=\frac{12}{7} \mathrm{~ms}^{-1}
$$

(b)

$$
v_{0}=2 \mathrm{gm} / \mathrm{s}
$$

$$
\begin{align*}
& F=m a \\
& -m g-m k v^{2}=m a \\
& a=-g-k v^{2} \tag{5}\\
& v \frac{\mathrm{~d} v}{\mathrm{~d} x}=-g-k v^{2} \\
& \int_{0}^{h} 1 \mathrm{~d} x=-\int_{2 g}^{0} \frac{v}{g+k v^{2}} \mathrm{~d} v=\int_{0}^{2 g} \frac{v}{g+k v^{2}} \mathrm{~d} v \tag{5}
\end{align*}
$$

RHS, by substitution:
Let $f(v)=g+k v^{2}$, then $\mathrm{d} f=2 k v \mathrm{~d} v$.

$$
\begin{align*}
\int \frac{v}{g+k v^{2}} \mathrm{~d} v & =\int \frac{1}{2 k f} \mathrm{~d} f \tag{5}\\
& =\frac{1}{2 k} \ln f \\
& =\frac{1}{2 k} \ln \left(g+k v^{2}\right) \tag{5}
\end{align*}
$$

$\left.x\right|_{0} ^{h}=\left.\frac{1}{2 k} \ln \left(g+k v^{2}\right)\right|_{0} ^{2 g}$
$h-0=\frac{1}{2 k} \ln \left(g+4 k g^{2}\right)-\frac{1}{2 k} \ln (g+0)$
$h=\frac{1}{2 k} \ln (1+4 k g)$
Q.E.D.

