Assess your learning - Vectors and Scalars				Revised for Week	Revised for Week
Rate your understanding of this chapter (be honest!)	No	Kinda	Yes	10 Exam	30 Exam
I can carry out a dimensional analysis on a formula to see if it's valid.					
E.g. Conduct a dimensional analysis of: $t^2 = 4\pi^2 \frac{l}{g}$					
I can explain the difference between vectors and scalars.					
I can give an example of a vector and a scalar.					
I can add two vectors together using the parallelogram method.					
E.g. Draw $2\vec{a} + 3\vec{b}$ onto the diagram below:					
a b					
I can represent vectors on the \vec{i} and \vec{j} plane. E.g. Show the vector $4\vec{i} - 3\vec{j}$ on the \vec{i} and \vec{j} plane.					
I can find the magnitude and direction of a vector, that's in \vec{i} and \vec{j} form. E.g. Find the magnitude and direction of $4\vec{i} - 3\vec{j}$.					
I can add/subtract vectors together, that are in \vec{i} and \vec{j} form. E.g. If $\vec{a} = 3\vec{i} + \vec{j}$, and $\vec{b} = \vec{i} + 7\vec{j}$, write $\vec{a} + \vec{b}$ in terms of \vec{i} and \vec{j} .					
I can compute the dot product of 2 vectors. E.g. Evaluate: $(7\vec{i} + 10\vec{j}).(2\vec{i} + 2\vec{j}).$					
I can find the angle between two vectors, using the formula $\cos \theta = \frac{\vec{p}.\vec{q}}{ \vec{p} . \vec{q} }$ E.g. Find the angle θ between $\vec{x} = 3\vec{i} + 4\vec{j}$ and $\vec{y} = 4\vec{i} + 3\vec{j}$.					
I can show if two vectors are perpendicular. E.g. Prove that $5\vec{i} - 2\vec{j}$ is perpendicular to $8\vec{i} + 20\vec{j}$.					
I can write in the opposite and adjacent sides of a right- angled triangle, when given the hypotenuse and one of the angles in the triangle θ , without evaluating θ . E.g. Calculate $ yz $, if $\tan \theta = \frac{2}{3}$					
x 0) 13					

I can write a vector in \vec{i} and \vec{j} form, when given its magnitude and direction. E.g. \vec{a} is a vector of magnitude 25 cm which makes an angle α with the positive x-axis. \vec{b} is a vector of magnitude 5 cm, which makes an angle β with the negative x-axis. If $\tan \alpha = \frac{4}{3}$ and $\tan \beta = \frac{5}{12}$, write \vec{p} and \vec{q} in terms of \vec{i} and \vec{j} .		
I can convert between polar form and rectangular form. E.g. Write the vector $3\vec{i} + 4\vec{j}$ in polar form.		
I can draw a time-displacement graph from a word problem. E.g. Joe runs at a constant speed of $6 m/s$ from a point 0 , running along a straight track for $8 s$. He takes a $10 s$ break and then returns along the same track to 0 in $7 s$. Draw a time-displacement graph of his motion.		