Leaving Certificate Examination

Sample Paper 2

Applied Mathematics

Higher Level 2 hours and 30 minutes

400 marks

Examination Number

For exa	aminer
Question	Mark
1	/50
2	/50
3	/50
4	/50
5	/50
6	/50
7	/50
8	/50
	/50
	/50
Written Total	/400
Project	/100
Overall Total	/500
Overall Grade	

(a)

A parcel rests on the horizontal floor of a van.

The van is travelling on a level road at 14 m $\rm s^{-1}$.

It is brought to rest by a uniform application of the brakes.

The coefficient of friction between the parcel and the floor is $\frac{2}{5}$.

Show that the parcel is on the point of sliding forward on the floor of the van if the stopping distance is 25 m.

(b)

A particle, of mass m falls vertically downwards under gravity.

At time t, the particle has speed v and it experiences a resistance force of magnitude kmv, where k is a constant.

The initial speed of the particle is u.

(ii) If $u = 9.8 \text{ m s}^{-1}$ and $k = 0.98 \text{ s}^{-1}$, find the distance travelled by the particle in 4 seconds.

(a)

Beatrix is going to college next year. She buys a new laptop for her studies. She will be in college for 4 years. The laptop costs €2000. She will sell whatever laptop she has at the end of the 4 years. The replacement value for this laptop each year and the maintenance costs are shown in the tables below:

Years old	1	2	3	4	Years	1	2	3	4
Value (€)	1400	900	400	100	Maintenance Cost(€)	50	200	300	350

(i) If Beatrix replaces her laptop after 2 years and sells again after 4 years, what will her costs amount to?

(ii) Use dynamic programming to find the minimum possible costs and the strategy which gives rise to it.

(b)

A smooth sphere, A, of mass *m* collides obliquely with another smooth sphere, B, of mass *m*.

Before impact, A is moving with speed u at an angle α to the line of centres of the spheres, where $0^{\circ} < \alpha < 45^{\circ}$.

B is at rest before the impact.

The coefficient of restitution for the collision is *e*.

(i) Find the speed of A and the speed of B after impact in terms of u, e and α .

(ii) Given that A is deflected through angle α because of the collision, show that $\tan^2 \alpha = e$.

_	_	_	_	_	_	_	 _	_	_	_	 _	_	 _	_	_	_	_	 	 _	_	_	 	_	_
	<u> </u>												 					 	 					
	-																							

(a)

The acceleration of a particle (in ms^{-2}) is determined by the equation

 $a = v^2 + 25 m/s^2$. The initial speed of the particle is 0. Find the distance travelled by the particle as its speed increases from 1 m/s to 4 m/s, to 3 significant figures.

A block A of mass 10*m* on a smooth plane inclined at an angle α with the horizontal, where $\tan \alpha = \frac{3}{4}$, is connected by a light inextensible string which passes over a smooth pulley to a second block B of mass 10*m*. B is 24.5 cm above an inelastic horizontal floor, as shown in the diagram.

The system is released from rest.

Find

(i) the acceleration of B

(ii) the time that B remains in contact with the floor.

]
																-
																1
																-
																-
																1
	_															
	_						 	 	 							
	_															

(a)

A particle is projected with speed 40 m s⁻¹ from a point A on the top of a vertical cliff of height 30 m. The maximum height reached by the particle is 42 m above the horizontal ground, at point B. It strikes the ground at C.

Find

(i) the value of α , the angle of projection

(ii) the horizontal range of the particle

(iii) the speed of the particle as it hits the ground at *C*.

(b)

A particle is projected horizontally along a smooth horizontal surface with initial speed 80 m s⁻¹. The particle has a retardation of $\frac{v}{100}$ m s⁻², where v is the speed.

Find

(i) the speed of the particle after t seconds

(ii) the distance travelled in *t* seconds

													_					
									 				_					
	 				 			_	 				_	 				
	 					_		_	 			 	 _					
	 					_		_	 	 		 	 _					
						_		_					 _		_		-	
	 				 		 _	_	 			 	 _	 	_			
	 		-		 		 	_	 				_	 				
			-					_					_			-		
	 		 -			 		_	 	 			_			-		

(iii) the speed v in terms of the distance travelled, s.

(a)

A smooth sphere A of mass 4m, moving with speed u on a smooth horizontal table collides directly with a smooth sphere B of mass m, moving in the opposite direction with speed u.

The coefficient of restitution between A and B is *e*.

(i) Find the speed, in terms of *u* and *e*, of each sphere after the collision.

The magnitude of the impulse on B due to the collision is T.

In a certain state in America, the population of pheasants is 25,000. The gun club release 3000 pheasant chicks into the wild every spring. The chances of a pheasant surviving through the shooting season and into the next year is 0.15.

(i) If P_n = the pheasant population in the state after n years, write down a difference equation which describes this situation.

(ii) Given that $P_0 = 25000$ find P_n in terms of n.

(iii) Estimate the pheasant population after 3 years.

(iv) Show that P_n approaches a steady state as the years go on and find that steady state.

(a)

A particle of mass m is moving in such a way that its displacement (in metres) at time t (in seconds) from a fixed point O is given by

 $\vec{s} = (r \cos \omega t)\vec{\iota} + (r \sin \omega t)\vec{j}$

(i) Show that the magnitude of its displacement from O is a constant r.

(ii) Find the acceleration vector at any time t.

(iii) Show that the force exerted on the particle is directed towards O and is of magnitude $m\omega^2 r$.

Car C, moving with uniform acceleration f passes a point P with speed u (> 0). Two seconds later car D, moving in the same direction with uniform acceleration 2f passes P with speed $\frac{6}{5}u$. C and D pass a point Q together. The speeds of C and D at Q are 6.5 m s⁻¹ and 9 m s⁻¹ respectively.

(i) Show that C travels from P to Q in $(\frac{3}{2f} + 5)$ seconds.

(ii) Find the value of *f*.

(a)

One end A of a light elastic string is attached to a fixed point. The other end, B, of the string is attached to a particle of mass m. The particle moves on a smooth horizontal table in a circle with centre O, where O is vertically below A and |AO| = h. The string makes an angle θ with the downward vertical and B moves with constant angular speed ω about OA.

A particle is projected vertically upwards with a velocity of $u \text{ m s}^{-1}$.

After an interval of 2t seconds a second particle is projected vertically upwards from the same point and with the same initial velocity.

They meet at a height of h m.

(a)

One method of dyeing a piece of cloth is to immerse it in a container which has *P* grams of dye dissolved in a fixed volume of water.

The cloth absorbs the dye at a rate proportional to the mass of dye remaining.

$$\frac{dx}{dt} = k(P - x)$$

where t is time in seconds, x is the mass of dye absorbed by the cloth and $k = \frac{1}{50}$.

(i) Find the time taken to dye a piece of cloth if a mass of $\frac{5}{8}P$ needs to be absorbed to reach the desired colour.

(Note:
$$\int \frac{dx}{a+bx} = \frac{1}{b} \ln|a+bx| + c$$
)

An alternative method is to keep the mass of dye present in the water constant at *P* grams by continuously adding dye throughout the process.

(ii) Find the time taken to dye the piece of cloth to the desired colour using this method.

Т																
Τ																
Т																
T																

A small particle hanging on the end of a light inextensible string 2 m long is projected horizontally from the point C.

D

(i) Calculate the least speed of projection needed to ensure that the particle reaches the point D which is vertically above C.

_	 	 	 	_	 	 	 	 	 		 		 		 			_		 	
																				_	
																				_	
										_										_	
					-		_		 											_	
							-													_	
					-		-		 				-				_	-		_	
																				_	
							-		 				-				_			_	
					-				 			_		_	 -	-		-	-	_	
						 	-		 				_	_	-			-		_	
-									 					_	-	_		-	-		
						 	-		 				_	_	-		_	-		_	
									 				_	_	-	_		-			
							-		 				_	_	-		_	-		_	
		 	 			 	 _		 			_	_	_	 -	_		-	-	_	
									 				_	_	-	_		-	-		
		 	 			 	 _		 			_	_	_	 -	_		-	-	_	
									 						-	_		-	-		
		 	 			 	 _		 			_	_	_	 -	_		-		_	
									 					_	-	_		-	-		
							_		 				_	_	-			-		_	
-									 					_	 -			-	-		
							_		 				_	_	-			-		_	
		 	 			 	 _		 				_	_	 -	_		-	-	_	
							_		 				_	_	-			-		_	
			 												 -			-			
_		 							 						 -			-	-		
		 	 			 	 _		 				_	_	 -	_		-	-	_	
_																		-			
							 _		 					_	 -	_		-	-	_	
							 		 						 -	_		-	-	_	

(ii) If the speed of projection is 7 m s^{-1} find the angle that the string makes with the vertical when it goes slack.

Page for extra work.

Label any extra work clearly with the question number and part.

Г																						
L																						
L																						
ŀ	-				-							 			_	-	_	_	-			
L																						
L																						
ŀ	-				 		-					 			_	_	 _	_				
ŀ	_																					
L																						
ŀ																						
ŀ	_	 								 		 	 		 		 					-
L																						
Γ																						
ŀ	-	 								 -		 		 _			 	_				-
L																						
L																						
ŀ	-				-	-											_	_				
ŀ	_	 								 		 					 					
L																						
ľ																						
ŀ	-	 								 -		 		 _	_		 	_	_			-
L																						
L																						
ŀ	-	 								 -		 		 _	_	-	 	_				-
ŀ	_						_			<u> </u>											\square	<u> </u>
L																						
ŀ																						
ŀ	_	 								 		 		 			 					-
L																						
Γ																						
ŀ	-									 -		 			_	_	 _	_	_			-
ŀ	_																					
L																						
Г																						
ŀ	-	 								 		 		 _			 					-
L																						
L																						
ŀ																_						
ŀ	_						_			 		 	 		 		 					
L																						
Γ																						
ŀ	-	 								 -		 		 _	_	-	 	_				-
L	_																					
L																						
ŀ																						
┞	-						-			 -									_	$\left - \right $	\vdash	-
l																						
ſ																						
ŀ	-		-	-	-	-	-	-	-	 -		 						-	-		\vdash	
ŀ	_						_			<u> </u>											\square	<u> </u>
ľ																						
ŀ	\rightarrow	 								 -							 					<u> </u>
L																						
ſ																						
ŀ	-									 -		 					 -	-	-		\vdash	
ŀ	_						_			<u> </u>											\square	<u> </u>
ľ																						
ŀ	-						_			-											$ \square$	
ſ																						
ŀ	-		-				-			-											\vdash	
ŀ		 					_			L												<u> </u>

Page for extra work.

Label any extra work clearly with the question number and part.

Г																						
L																						
L																						
ŀ	-				-							 			_	-	_	_	-			
L																						
L																						
ŀ	-				 		-					 			_	_	 _	_				
ŀ	_																					
L																						
ŀ																						
ŀ	_	 								 		 	 		 		 					-
L																						
Γ																						
ŀ	-	 								 -		 		 _			 					-
L																						
L																						
ŀ	-				-	-											_	_				
ŀ	_	 								 		 					 					-
L																						
ľ																						
ŀ	-	 								 -		 		 _	_		 _	_	_			-
L																						
L																						
ŀ	-	 								 -		 		 _	_	-	 	_				-
ŀ	_						_			<u> </u>											\square	<u> </u>
L																						
ŀ																						
ŀ	-	 								 		 		 			 					-
L																						
Γ																						
ŀ	-									 -		 			_	_	 _	_	_			-
ŀ	_																					
L																						
Γ																						
ŀ	-	 								 		 		 _			 					-
L																						
L																						
ŀ																_						
ŀ	_						_			 		 	 		 		 					
L																						
Γ																						
ŀ	-	 								 -		 		 _	_	-	 	_				-
L	_																					
L																						
ŀ																						
┞	-						-			 -									_	$\left - \right $	\vdash	-
l																						
ſ																						
ŀ	-		-	-	-	-	-	-	-	 -		 						-	-		\vdash	
ŀ	_						_			<u> </u>											\square	<u> </u>
ľ																						
ŀ	\rightarrow	 								 -							 					
L																						
ſ																						
ŀ	-						-			 -		 					 -	-	-		\vdash	
ŀ	_						_			<u> </u>											\square	<u> </u>
ľ																						
ŀ	-						_			-											$ \square$	
ſ																						
ŀ	-		-				-			-											\vdash	
ŀ		 					_			L												<u> </u>