Assess your learning – Circular Motion				Revised for Week	Revised for Mocks
Rate your understanding of this chapter (be honest!)	No	Kinda	Yes	10 Exam	
I can solve problems involving a mixture of linear					
speed and angular speed.					
E.g.					
A particle is moving in a circle with angular speed of					
6 rad/s. If the velocity of the particle is $9 cm/s$, find					
the radius of the circle of motion.					
I can solve problems involving particles moving in					
horizontal circles.					
E.g. A portiale of mass 0 by is maying in a honizontal single					
A particle of mass $8 kg$ is moving in a horizontal circle on a smooth table. It is connected by a light					
inextensible string of length $0.7 m$ to a point that is					
0.4 m vertically above the centre of the circle of					
motion. The reaction force at the table is $30 N$. Find					
the angular velocity and the tension in the string.					
I can solve problems involving vertical circles. <mark>E.g.</mark>					
A ring P of mass m is threaded on a smooth circular					
wire, with centre 0 and a radius r . The circular wire					
is fixed in a vertical position. The ring is projected					
horizontally with an initial speed of u from the lowest					
point on the wire. Find the value of u , so that the ring					
just makes it to the top of the wire.					
I can solve problems involving Hooke's Law. <mark>E.g.</mark>					
A particle of mass 2 kg is attached to one end of an					
elastic string of natural length 1 m and elastic					
constant $40 N/m$. The other end is attached to a					
fixed point on a smooth horizontal table. The particle					
begins to move in a circle of radius $3 m$. Find its					
angular speed.					